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Implications of the Changing Space
Weather Environment
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Total B field (nT)

Strong Reduction in Field Possible —
Much Higher GCR Flux
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Radiation Through Earth’s Atmosphere
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Radiation at Aviation Altitudes
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Dose Rate (uGy/hr)
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Characterizing the Earth-Moon-Mars SEP Radiation
Environment

January, March, and
May 2012 SEP events.

Dose rates measured
by CRaTER at the
Moon, MSL/RAD during
cruise to Mars, and
predicted by PREDICCS.

PREDICCS takes SEP
measurements and
uses EPREM to
simulate the transport
to Earth and Mars.

Converts proton flux to
dose rate behind
various levels of
shielding.
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Characterizing the Earth-Moon-Mars SEP Radiation
Environment

Dose accumulated
during January, March,
and May 2012 SEP
events at location of
MSL (except CRaTER).

GCR background
removed.

Dose accumulated
behind 0.3 g/cm”2
shielding exceeds the
30-day skin limit for
the January and March
events.
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Characterizing the Earth-Moon-Mars SEP Radiation
Environment

Accumulated dose during
each SEP event as a function
of aluminum-equivalent
shielding.

RAD had an average shielding
of about 16 g/cm”2.

Percent differences between
PREDICCS and RAD range
from as little as 2% to 54%.
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GCR & SEP Through the Solar System

SEP: > 10 MeV p+ Fluence (10°em™) _
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Deriving the Scattering Mean Free Path of Helium

Pickup lons
Pickup ion Density
measurements derive |
a longitudinal inflow /:\\
direction of the : —
interstellar wind that is 1,@?40 Longitude

consistently higher
than neutral
measurements.

N

Interstellar Wind

—

Simulating the \
PUI Transport

transport betyveen (relative to radial
neutral focusing cone solar wind flow)
and pickup focusing

cone allows us to

derive parameters.

Quinn et al. 2016



The transport of helium pickup ions is
simulated using EPREM for a mean free
path range of 0.1 AU to 1 AU.

The longer the mean free path, the more
the pickup focusing cone shifts compared
to the neutral focusing cone.

The peak longitudes are plotted against
mean free path.

The modeled shift intersects the observed
shift at 0.19 AU +0.29(-0.19) AU.
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The amount of shift is suggested to be due to an
anisotropic velocity distribution.

By calculating the average azimuthal velocity of the
pickup ions, we see that the pickup ion distribution
reaches ~8% of the solar wind speed inside 1 AU.

Although this velocity is small, it’s enough to shift
the focusing cone by the 1.8 degree observation
difference.

Using EPREM’s ability to turn transport effects on or
off, EPREM is ran for the 4 cases shown in the figure
caption.

The amount of shift from each transport effect is
found by differencing the peak longitude with the
previous case.

Pitch-angle scattering 20.00%
Adiabatic focusing 69.43%
Perpendicular diffusion 10.56%
Particle drift <0.01%

—— Total Distribution, 0 sw;; =1
—— Ring-beam Distribution, w;; = 0.5
—— Adiabatically Cooled Distribution, w,;; < 0.5
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Pickup lon acceleration in a CIR

Coupled EPREM with an MHD model (Giacalone et
al. 2002) for CIR structures where the forward and

reverse shocks have not yet formed.

The pickup ion velocity modeled by EPREM within
the compression region has a high-energy tail with

-5 power law index.

Chen et al. 2015, 2016
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ey Comparison
R — between modeled
- velocity distribution
and observations
from STEREO/

PLASTIC.
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The tail is sensitive to the velocity gradient
associated with the CIR formation causing the
power law index to range from -3 to above -10.
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This also suggests that the velocity gradient can
efficiently create a seed population of pickup ions
before a shock forms and without stochastic .
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Probing the Production Mechanism
of Inner Source Pickup lons

Inner source pickup ions are produced by the
interaction between the solar wind and dust

grains orbiting the sun. itnznif

Inner source
pickup lon

Possible production mechanisms include:
e Solar wind neutralization Sun
e Solar wind recycling
* Sputtering

* Dust-dust collisions
* Sun-grazing comets

p, D?st grams

Solar wind recycling — Solar wind ions impact
dust grains, are neutralized within the grain,
diffuse to the surface, desorb from the grain,
then get ionized and picked up by the solar
wind.

Quinn et al., 2017 (manuscript under
preparation)




Probing the Production Mechanisrr
of Inner Source Pickup lons

We use EPREM to simulate the
production of inner source pickup ions
from solar wind recycling.

The figures show a top-down view of the
heliosphere from the sun at the center and
out to 5.5 AU. The interstellar wind flows
from right to left. Shown is the C+/0O+ ratio
for low energies (inner source, top figure)
and higher energies (interstellar, bottom
figure).

The C+/0+ ratio for inner source pickup ions
resembles that of the solar wind with more
Oxygen than Carbon. However, pickup ion
measurements show more Carbon than
Oxygen. This shows there must be another
production mechanism other than solar
wind recycling.
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ICME/GCR studies using MESSENGER data

— First spacecraft since 1980’s at < 0.5 AU.
In orbit around Mercury from March 2011 to April 2015.

Areas of study for which MESSENGER data is of high importance:

Database and characteristics of ICMEs at ~0.3 AU (Winslow et al., 2015)

If used in conjunction with data from other spacecraft:

ICME evolution in the inner heliosphere (Winslow et al., 2016)
GCR modulation by ICMEs in the inner heliosphere (Winslow et al. 2017, in prep.)
Validation of ICME propagation models




MESSENGER ICME Database
Winslow et al. (2015) JGR

Used observations from MESSENGER in orbit around Mercury to study ICMEs near 0.3
AU.

e (ataloged nearly 70 ICMEs at Mercury between 2011 - 2015.

e Investigated key ICME property changes from Mercury to 1 AU.

Results:
e Good agreement with previous studies for magnetic field strength dependence on

distance, and evidence that ICME deceleration continues past the orbit of Mercury.

e This ICME database useful for multipoint spacecraft studies of recent ICMEs, as well
as for model validation of ICME properties.




Case study: ICME in conjunction
Winslow et al. (2016) JGR

ICME from 29 December 2011 observed in “perfect” longitudinal
alignment at MESSENGER and STEREO A.

From force-free field modeling, orientation of the underlying
flux rope underwent a rotation of ~80¢ in latitude and ~ 65¢in
longitude between MESSENGER and STEREO A.

Based on both spacecraft observations as well as ENLIL model
simulations of the steady state solar wind, we find that
interaction involving magnetic reconnection with corotating
structures in the solar wind dramatically alters the ICME
magnetic field.

The strong influence of disturbances in the solar wind on ICMEs
during propagation has significant implications for space
weather forecasting and should serve as a caution on using very
distant observations to predict the geoeffectiveness of large
interplanetary transients.




Opening a window on ICME related GCR modulation in
the inner solar system

Forbush decreases in GCR count rates indicate ICME related GCR modulation.

We investigate changes with heliospheric distance in GCR modulation by ICMEs in the inner
heliosphere using data from MESSENGER, LRO, and MSL for an ICME in conjunction.

ICME launched on 12 Feb 2014 — Close longitudinal alignment between Mercury, Earth/Moon,
and alignment within 30° with Mars. ENLIL simulation shows ICME reaching all 3 planets.

© Mercury ® Venus




Opening a window on ICME related GCR modulation in
the inner solar system

Multipoint observations show depth of Forbush decrease diminishes with distance from
Sun.
Glimpse of environment we are about to explore with Solar Probe+, Solar Orbiter

Normalized GCR Rate
o
©

—MESSENGER-NS  15% drop
—LRO-CRaTER 7% drop
—MSL-RAD 6% drop
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