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Institutions

« UNH
— Energetic Particles Acceleration/EMMREM
— Corona, CMEs and ICMEs
e PSI
— Corona, CMEs and ICMEs
« SWRI
— Seed particles

e Goddard & CCMC

— Energetic particle acceleration
— Community access



Radiation

Hazards
« Galactic Cosmic Rays io.so /
(GCRs) i

— Steady Background
— Career limit in ~ 3 years

« Solar Energetic Particles
(SEPs)

— Acute Sources

— ESPs versus impulsive
component

— Time-dependent soun i
response
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Wargo Axiom
The Radiation

Science enables Environment affects
Exploration and ' Human Systems
Exploration enables

Science

(Human-made)
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Effects
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Goals

Goal 1: Scientifically explore the seed populations and
acceleration of energetic particles in the low corona, through
interplanetary space, and over broad longitudinal regions

Goal 2: Couple the energetic particle aceeleration model
(EPREM, the energetic particle radiation environment model) with
MHD models that describe the propagation of coronal mass
ejections from the low coronal plasma environment through the
Interplanetary medium.

Goal 3: Validate results the coupled EPREM and EMMREM
models with observations at distributed observers near 1 AU and
out beyond Mars. Validation extends across our understanding of
radiation induced hazards from solar energetic particles and
galactic cosmic rays at Earth down to atmospheric levels, out into
deep space and to Mars and beyond.

Goal 4: Extend key data sets useful for the project: shock
parameters at 1 AU, CME propagation data, and radiation
environment data through the inner heliosphere.




Investigator Highlights

 Matt Gorby, Jon Linker, Ron Caplan, Tibor Torok, Jon
Linker, UNH, PSI
— Fantastic work on development, coordination, coupling
—  Work with PSI and CCMC
* Leila Mays, CCMC s
— Excellent partner at the CCMC
—  Currently leading a C-SWEPA publication
— Invited talks at AGU, EGU, on C-SWEPA coupling
* Colin Joyce wins UNH Graduate Research Award
—  Should graduate soon

— 1 award given each year at University of New Hampshire
competed across all graduate students

— Authored or Co-authored 14 publications, first-authored 5
publications in incredibly diverse areas
. Reka Winslow
— New PostDoc at UNH
— Several new discoveries about the evolution of Coronal
Mass Ejections through conjunction events from
Messenger to ACE, STEREO and LRO
*  Junhong Chen
—  Recently received PhD
—  Work on suprathermal ions and PUI acceleration
+  Philip Quinn
—  Graduate student
— Leading three papers on pickup ions, suprathermal ions
and radiation through the inner heliosphere
*  Fatemeh Rahmanifard

—  Studying evolution of the solar cycle, possible
dea/_etppment of grand minimum and implications for
radiation




Report/
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Overview of Deliverables

 Deliverables outside CCMC

— PREDICCS: running in real-time radiation environment
http://prediccs.sr.unh.edu

9
— EPREM - MAS: model up and running, internal web interface working

« Deliverables to the CCMC:

— PREDICCS: installed and running in real-time
http://cemc.gsfc.nasa.qgov/ccmc-swan/predices.php

— EPREM: installed, available for Runs on Request in work

— EPREM+cone: installedavailable for Runs on Request in work

— Coupled WSA-ENLIL+EPREM: installed, simulations are currently
being tested, preliminary run results are listed at

http://ccmec.gsfc.nasa.gov/community/LWS/
lws_cswepa.php




Data Products - The
CfA Interplanetary e —
ShOCk Database CfA Interplanetary Shock Database - Individual Event Detail

i Navigation
- Previous event

cfa.harvard.edu/shocks sy

-i Select Spacecraft Database: Wind Shock Analysis
. Wind database Event ID: 20160710429

° Observational summaries and MHD o s Observation time: 03/11/2016 71.18696 0429 [UT]
solutions derived for 600+ IP shocks

-~ Publications

— Speed, orientation, morphology,
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Data Sharing + Products (2/2)
» MESSENGER — 1 AU ICME Database

— http://spdf.gsfc.nasa.qgov/pub/data/
messenger/

— http://cswepa.sr.unh.edu/
icmecatalogatmercury.html

* NASA's VEPO

—http://vepo.gsfc.nasa.qgov

« PREDICCS database

— http://prediccs.sr.unh.edu/data/
goesPlots/archive/




Agenda

Overview

Modeling Formation of Solar Transients from the Low
Corona (Jon Linker)

Energetic Particle Propagation and Acceleration from the
Low Corona and through the Solar System (Nathan
Schwadron)

Particle Radiation at Earth and Through the Inner Solar
System (Phil Quinn and Colin Joyce)

« Source Populations (Phil Quinn)
* Propagation of CMEs (Reka Winslow)

CSWEPA Tools and Methodology (Matthew Gorby)



Energetic Particle Propagation and
Acceleration from the Low Corona
and through the Solar System

>

N. A. Schwadron, N. Lugaz, J. Linker, M. Gorby,
Pete Riley, Z. Mikic, R. Lionello, T. Torok, V. Titov,
B. Chandran, J. Cooper, M. Desali, K.
Germaschewki, J. Giacalone, P. Isenberg, J.
Kasper, K. Korreck, M. Lee, P. MacNeice, H.

Spence, S. Smith, M. Stevens, P. Quinn, C. Joyce,
R. Winslow, J. Chen, F. Rahmanifard



Eruption -_—

1.38 (~ -

* Flux rope eruption triggered by localized converging flows
» Eruption evolves west to east as was observed




Sympathetic eruption

| — /
Time=164.02 ; /4

XRT_TiPoly XRT_TiPoly

« Second eruption
qualitatively reproduced



CME propagation

-
lime=164.85 5

Pseudocolor

b(t = 160.4) / b(760.0)

Halo CME
(Brightness as running ratio)

e CME kinetic energy = 4x10%? ergs
e CME propagation speed = 1500 km/s



Interplanetary propagation

View on ecliptic

* Simulate the propagation of the CME to 1 AU
* Coupling to heliospheric code in rotating frame (Lionello et al. ApJ
2013)
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Diffusive solution
with and without
escape
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shock-normal
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= SIMULATION

e EPAM 7/14/00

+ GOES 7/14/00

e SAMPEX 7/14/00
—GCR 7/14/00
——=7/14/00 Fit

Protons/(cm’st-MeV)

10’

| 0.1 1 10 100
‘ Kinetic Energy (MeV)



Spectral Slope (E > E ..;)
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Conclusions

Discovering roots of Energetic Particle
Acceleration in Low Coro’na

Significantly broadens longitudinal spread
Characteristic spectrum showing

— Injection

— Diffusive flank acceleraion

— Escape at high energies

Validation both via time profiles and
spectral shape of event






C-SWEPA Goals

Goal 1: Scientifically explore the seed populations and acceleration of
energetic particles in the low corona, through interplanetary space, and
over broad longitudinal regions -

Goal 2: Couple the energetic particle acceleration model (EPREM, the
energetic particle radiation environment model) with MHD models that
describe the propagation of coronal mass ejections from the low
coronal plasma environment through the interplanetary medium.

Goal 3: Validate results the coupled EPREM and EMMREM models
with observations at distributed observers near 1 AU and out beyond
Mars. Validation extends across our understanding of radiation induced
hazards from solar energetic particles and galactic cosmic rays at Earth
down to atmospheric levels, out into deep space and to Mars and
beyond.

Goal 4: Extend key data sets useful for the project: shock parameters
at 1 AU, CME propagation data, and radiation environment data
through the inner heliosphere.



C-SWEPA Role — National &

International Teams

The Cosmic Ray Telescope the for the Effect of Radiation
(CRaTER) team (http://crater.unh.edu )

The Dynamic Response of the Environments at Asteroids,
the Moon, and the Moons of Mars (DREAM and DREAM2
Projects, http://ssed.gsfc.nasa.gov/dream/ )

The Sun-2-Ice team (hitp://sun-2-ice.sr.unh.edu, NSF
FESD)

The Solar Probe Plus team (hiip.//solarprobe./huapl.edu)

The International Team on Radiation Interactions. (
http://www.issibern.ch/teams/interactplanetbody/)




INTERNATIONAL

SPACE
I SCIENCE

INSTITUTE

The Internatioinal Space
Science Institute (ISSI) is an
Institute of Advanced Study,
bringing together scientists from
all over the world meet in a
multi- and interdisciplinary
setting to advance the
understanding of results from
space missions, ground based
observations and laboratory
experiments.

The international research teams
are set up in response to an
Annual Call by ISSI. Their goal is
to carry out a resarch project
leading to publications in
scientific journals.

International Space Science Institute | Radiation Interactions at Planetary Bodies

ISS| Re

Radiation Interactions at Planetary B

Proposal Abstract

Radiation Interactions at Planetary Bodies

SINCE THE LAUNCH of the Lunar Reconnaissance Orbiter (LRO) in 2009, the Comic Ray
Telescope for the Effects of Radiation (CRaTER) has directly measured the Lunar radiation
environment and mapped albedo protons (~100 MeV) coming from the Moon. Particle
radiation has widespread effects on the lunar regolith ranging from chemical alteration of
lunar volatiles to the formation of subsurface electric fields with the potential to cause
dielectric breakdown that could modify the regolith in permanently shaded craters.
LRO/CRaTER's direct measurements are transforming our understanding of the lunar

radiation environment and its effects on the moon.

Similarly, the Radiation Assessment Detector (RAD) has been measuring the energetic
particle radiation environment on the surface of Mars since the landing of the Curiosity rover
in August 2012. The Martialn surface is protected by the atmosphere above; though only
about 1% as thick as Earth's, its depth is sufficient to stop solar wind ions and the large
majority of Solar Energetic Particles. RAD, like CRaTER, measures radiation dose, dose

equivalent (related to human health risks), and particle spectra to enable rigorous tests of

environment and transport models.

Ies

Recent measurements of galactic cosmic radiation and solar energetic particle radiation at
other planetary objects (e.g., the moons of Mars) raise new fundamental questions about
how radiation interacts at planetary bodies and what its long term impacts are.

This ISSI team will advance the study of radiation interactions.

Read more... (proposal and abstract, pdf)

2015 Project Team




